Phase-II Monitoring of AR (1) Auto correlated Polynomial Profiles
نویسندگان
چکیده
In some statistical process control applications, quality of a process or product can be characterized by a relationship between a response and one or more independent variables, which is typically referred to a profile. In this paper, polynomial profiles are considered to monitor processes in which there is a first-order autoregressive relation between the error terms in each profile. A remedial measure is first proposed to eliminate the effect of autocorrelation in phase-ІІ monitoring of auto-correlated profiles. Then, three methods are employed to monitor polynomial profiles where their performances are compared using the average run length criterion.
منابع مشابه
Phase-II Monitoring of AR (1) Autocorrelated Polynomial Profiles
In some statistical process control applications, quality of a process or product can be characterized by a relationship between a response and one or more independent variables, which is typically referred to a profile. In this paper, polynomial profiles are considered to monitor processes in which there is a first order autoregressive relation between the error terms in each profile. A remedi...
متن کاملPhase II monitoring of auto-correlated linear profiles using linear mixed model
In many circumstances, the quality of a process or product is best characterized by a given mathematical function between a response variable and one or more explanatory variables that is typically referred to as profile. There are some investigations to monitor auto-correlated linear and nonlinear profiles in recent years. In the present paper, we use the linear mixed models to account autocor...
متن کاملMonitoring and Change Point Estimation of AR(1) Autocorrelated Polynomial Profiles
In this paper, a remedial measure is first proposed to eliminate the effect of autocorrelation in phase-ІІ monitoring of autocorrelated polynomial profiles, where there is a first order autoregressive (AR(1)) relation between the error terms in each profile. Then, a control chart based on the generalized linear test (GLT) is proposed to monitor the coefficients of polynomial profiles and an R-c...
متن کاملInvestigating Effect of Autocorrelation on Monitoring Multivariate Linear Profiles
Abstract Profile monitoring in statistical quality control has attracted attention of many researchers recently. A profile is a function between response variables and one or more independent variables. There have been only a limited number of researches on monitoring multivariate profiles. Indeed, monitoring correlated multivariate profiles is a new subject in the fileld of statistical proces...
متن کاملEFFECT OF LOCATION OF EXPLANATORY VARIABLE ON MONITORING POLYNOMIAL QUALITY PROFILES
The quality is typically modeled as the univariate or multivariate distribution of quality characteristic/s. In recent applications of statistical process control, quality profiles in which the relationship between a response and explanatory variable/s is captured and monitored are increasingly used to model the quality. Several techniques have been developed to enhance the speed of detecting c...
متن کامل